Contents | v | |----------------------------| | ix | | 1 | | 3 | | 3
5
8 | | 12 | | 12
15
18
21 | | 26 | | 26
31
32
36
39 | | | xii Contents | 4. | Representations of \mathfrak{S}_d : Young Diagrams and Frobenius's Character Formula | 44 | |-----|--|--------------------------| | | §4.1: Statements of the Results §4.2: Irreducible Representations of \mathfrak{S}_d §4.3: Proof of Frobenius's Formula | 44
52
54 | | 5. | Representations of \mathfrak{A}_d and $\operatorname{GL}_2(\mathbb{F}_q)$ | 63 | | | §5.1: Representations of \mathfrak{A}_d
§5.2: Representations of $\mathrm{GL}_2(\mathbb{F}_q)$ and $\mathrm{SL}_2(\mathbb{F}_q)$ | 63
67 | | 6. | Weyl's Construction | 75 | | | §6.1: Schur Functors and Their Characters
§6.2: The Proofs | 75
84 | | | Part II: Lie Groups and Lie Algebras | 89 | | 7. | Lie Groups | 93 | | | §7.1: Lie Groups: Definitions
§7.2: Examples of Lie Groups
§7.3: Two Constructions | 93
95
101 | | 8. | Lie Algebras and Lie Groups | 104 | | | §8.1: Lie Algebras: Motivation and Definition§8.2: Examples of Lie Algebras§8.3: The Exponential Map | 104
111
114 | | 9. | Initial Classification of Lie Algebras | 121 | | | §9.1: Rough Classification of Lie Algebras§9.2: Engel's Theorem and Lie's Theorem§9.3: Semisimple Lie Algebras§9.4: Simple Lie Algebras | 121
125
128
131 | | 10. | Lie Algebras in Dimensions One, Two, and Three | 133 | | | §10.1: Dimensions One and Two
§10.2: Dimension Three, Rank 1
§10.3: Dimension Three, Rank 2
§10.4: Dimension Three, Rank 3 | 133
136
139
141 | | 11. | Representations of $\mathfrak{sl}_2\mathbb{C}$ | 146 | | | §11.1: The Irreducible Representations
§11.2: A Little Plethysm
§11.3: A Little Geometric Plethysm | 146
151
153 | | Contents | xiii | |--------------|------| | - | | | 12. | Representations of $\mathfrak{sl}_3\mathbb{C}$, Part I | 161 | |-----|---|-----| | 13. | Representations of sl ₃ C, Part II: Mainly Lots of Examples | 175 | | | §13.1: Examples | 175 | | | §13.2: Description of the Irreducible Representations | 182 | | | §13.3: A Little More Plethysm | 185 | | | §13.4: A Little More Geometric Plethysm | 189 | | | Part III: The Classical Lie Algebras and Their Representations | 195 | | 14. | The General Set-up: Analyzing the Structure and Representations | | | | of an Arbitrary Semisimple Lie Algebra | 197 | | | §14.1: Analyzing Simple Lie Algebras in General | 197 | | | §14.2: About the Killing Form | 206 | | 15. | $\mathfrak{sl}_4\mathbb{C}$ and $\mathfrak{sl}_n\mathbb{C}$ | 211 | | | §15.1: Analyzing sI _n C | 211 | | | §15.2: Representations of sl ₄ C and sl _n C | 217 | | | §15.3: Weyl's Construction and Tensor Products | 222 | | | §15.4: Some More Geometry | 227 | | | §15.5: Representations of GL _n C | 231 | | 16. | Symplectic Lie Algebras | 238 | | | §16.1: The Structure of $\operatorname{Sp}_{2n}\mathbb{C}$ and $\operatorname{\mathfrak{sp}}_{2n}\mathbb{C}$ | 238 | | | §16.2: Representations of $\mathfrak{sp}_4\mathbb{C}$ | 244 | | 17. | $\mathfrak{sp}_6\mathbb{C}$ and $\mathfrak{sp}_{2n}\mathbb{C}$ | 253 | | | §17.1: Representations of sp ₆ € | 253 | | | §17.2: Representations of $sp_{2n}\mathbb{C}$ in General | 259 | | | §17.3: Weyl's Construction for Symplectic Groups | 262 | | 18. | Orthogonal Lie Algebras | 267 | | | §18.1: SO _m C and so _m C | 267 | | | §18.2: Representations of $\mathfrak{so}_3\mathbb{C}$, $\mathfrak{so}_4\mathbb{C}$, and $\mathfrak{so}_5\mathbb{C}$ | 273 | | 19. | $\mathfrak{so}_6\mathbb{C}$, $\mathfrak{so}_7\mathbb{C}$, and $\mathfrak{so}_m\mathbb{C}$ | 282 | | | §19.1: Representations of so ₆ € | 282 | | | §19.2: Representations of the Even Orthogonal Algebras | 286 | | | §19.3: Representations of the Even Orthogonal Algebras §19.3: Representations of $\mathfrak{so}_7\mathbb{C}$ | 292 | | | §19.4: Representations of the Odd Orthogonal Algebras | 294 | | | §19.5: Weyl's Construction for Orthogonal Groups | 296 | | | aria oji o comulation ist simogenar croups | 2,0 | | xiv | Contents | |-----|----------| |-----|----------| | 20. | Spin Representations of $\mathfrak{so}_m\mathbb{C}$ | 299 | |-----|---|--------------------------| | | §20.1: Clifford Algebras and Spin Representations of $\mathfrak{so}_m\mathbb{C}$ §20.2: The Spin Groups $\mathrm{Spin}_m\mathbb{C}$ and $\mathrm{Spin}_m\mathbb{R}$ §20.3: $\mathrm{Spin}_8\mathbb{C}$ and $\mathrm{Triality}$ | 299
307
312 | | | Part IV: Lie Theory | 317 | | 21. | The Classification of Complex Simple Lie Algebras | 319 | | | §21.1: Dynkin Diagrams Associated to Semisimple Lie Algebras
§21.2: Classifying Dynkin Diagrams
§21.3: Recovering a Lie Algebra from Its Dynkin Diagram | 319
325
330 | | 22. | g ₂ and Other Exceptional Lie Algebras | 339 | | | §22.1: Construction of g₂ from Its Dynkin Diagram §22.2: Verifying That g₂ is a Lie Algebra §22.3: Representations of g₂ §22.4: Algebraic Constructions of the Exceptional Lie Algebras | 339
346
350
359 | | 23. | Complex Lie Groups; Characters | 366 | | | §23.1: Representations of Complex Simple Groups§23.2: Representation Rings and Characters§23.3: Homogeneous Spaces§23.4: Bruhat Decompositions | 366
375
382
395 | | 24. | Weyl Character Formula | 399 | | | §24.1: The Weyl Character Formula
§24.2: Applications to Classical Lie Algebras and Groups | 399
403 | | 25. | More Character Formulas | 415 | | | §25.1: Freudenthal's Multiplicity Formula
§25.2: Proof of (WCF); the Kostant Multiplicity Formula
§25.3: Tensor Products and Restrictions to Subgroups | 415
419
424 | | 26. | Real Lie Algebras and Lie Groups | 430 | | | §26.1: Classification of Real Simple Lie Algebras and Groups
§26.2: Second Proof of Weyl's Character Formula
§26.3: Real, Complex, and Quaternionic Representations | 430
440
444 | | | Appendices | 451 | | A | . On Symmetric Functions | 453 | | | §A.1: Basic Symmetric Polynomials and Relations among Them §A.2: Proofs of the Determinantal Identities §A.3: Other Determinantal Identities | 453
462
465 | Contents xv | B. On Multilinear Algebra | 47 1 | |--|-------------| | §B.1: Tensor Products | 47 | | §B.2: Exterior and Symmetric Powers | 472 | | §B.3: Duals and Contractions | 47: | | C. On Semisimplicity | 478 | | §C.1: The Killing Form and Cartan's Criterion | 478 | | §C.2: Complete Reducibility and the Jordan Decomposition | 48 | | §C.3: On Derivations | 483 | | D. Cartan Subalgebras | 487 | | §D.1: The Existence of Cartan Subalgebras | 487 | | §D.2: On the Structure of Semisimple Lie Algebras | 489 | | §D.3: The Conjugacy of Cartan Subalgebras | 491 | | §D.4: On the Weyl Group | 493 | | E. Ado's and Levi's Theorems | 499 | | §E.1: Levi's Theorem | 499 | | §E.2: Ado's Theorem | 500 | | F. Invariant Theory for the Classical Groups | 504 | | §F.1: The Polynomial Invariants | 504 | | §F.2: Applications to Symplectic and Orthogonal Groups | 511 | | §F.3: Proof of Capelli's Identity | 514 | | | | | Hints, Answers, and References | 516 | | Bibliography | 536 | | Index of Symbols | 543 | | Index | 547 | | | |