Organo-arsen-, -antimon- und -wismut-Verbindungen	16
a) Historische Übersicht	16
b) Nomenklatur	20
1. Derivate der dreiwertigen Elemente	
2. Derivate der fünfwertigen Elemente	
c) Gliederungsschema	
d) Zur Handhabung von organischen Arsen-, Antimon- und Wismut-Verbindungen	31
Methoden zur Herstellung und Umwandlung von Organo-arsen-Verbindungen	33
I. Organische Verbindungen des dreiwertigen Arsens	33
a) Arsine	33
A. Herstellung	33
1. primäre Arsine	33
α) durch Reduktion von Arsonsäuren	33
eta) durch Reduktion von Arsonigsäure-halogeniden (Dihalogen-arsinen)	35
γ) durch Reduktion von Arseno-Verbindungen	
δ) durch Alkylierung von Arsenwasserstoff	36
2. sekundäre Arsine	37
α) durch Reduktion von Arsinsäuren und ihren Derivaten	37
$oldsymbol{eta}$) durch Reduktion von Arsinigsäure-halogeniden (Halogen-diorgano-arsinen) $ \ldots \ldots \ldots$	
γ) aus primären und sekundären Alkalimetall-arseniden	
δ) durch Reduktion von Diarsinen	45
3. tert. Arsine	45
α) aus Arsen	
β) aus Arsen(III)-chlorid, Arsonigsäure- oder Arsinigsäurehalogeniden (Halogen-arsinen)	
eta_1) durch Umsetzung mit Grignard-Verbindungen	
β_2) durch Umsetzung mit Organo-lithium-Verbindungen	54
β_3) durch eine modifizierte "Wurtz-Fittig"-Reaktion	
eta_4) durch Umsetzung mit verschiedenen metallorganischen Verbindungen	
γ) aus Arsen(III)-oxid, Arsinigsäureanhydriden oder ihren Derivaten	
δ) aus primären oder sekundären Arsinen bzw. ihren Metall-Derivaten (Arsenide,	
Arsinometall-Verbindungen)	75
arepsilon) aus Diarsinen oder Arseno-Verbindungen (Cyclopolyarsinen)	88
ζ) durch Cycloadditionsreaktionen an Arseninen (Arsabenzolen)	
η) durch Reduktion von tert. Arsinoxiden bzwsulfiden	
9) aus quartären Arsoniumsalzen	
9 ₁) durch Pyrolyse	
ϑ_2) Elektrochemische Spaltung	
θ_4) Cyanolytische oder hydrolytische Spaltung	
1) aus anderen tert. Arsinen	
1) Austauschreaktionen am Arsen	
1 ₂) Reaktionen am organischen Substituenten	

4. Optisch aktive tert. Arsine	
 α) direkte Spaltung racemischer tert. Arsine in die Antipoden β) durch stereoselektive Reaktionen an chiralen Organo-arsen-Verbindungen 	110 113
eta_1) aus chiralen Arsoniumsalzen	113 115
B. Umwandlung	
1. Salzbildung	117
$lpha$) von Schwefel oder Selen eta) von Stickstoff-Verbindungen γ) von Halogenen δ) von Lewis-Säuren	120 121
4. Reaktionen unter Spaltung der As-C-Bindung	122
α) reduktive Spaltung	122
5. Bildung von Komplexen	124
o) Arsenine (Arsabenzole), Arsa-cyanine und verwandte Verbindungen	124
1. Arsenine (Arsabenzole) 2. 1,2,3-Diazarsole (Arsa-diazole) 3. Arsa-methincyanine	124 126
2) Arsenide und verwandte Verbindungen	
A. Herstellung B. Umwandlung	128
Magnesium-, Calcium- und Zink-arsenide Bor-, Aluminium-, Gallium- und Indium-arsenide	132 133
4. Silizium-, Zinn-, Germanium- und Blei-arsenide A. Herstellung B. Umwandlung	135 135
5. Arsino-phosphor- bzwantimon-Verbindungen	139
β) Arsino-phosphoniumsalze	141
1) Di-, Trì-und Tetraarsine	144
A. Herstellung	144
1. Diarsine	144
lpha) aus sek. Arsinen und	
a_1) Bis-[diorgano-arsin]-oxiden bzw. sulfiden	145
β) aus Arsinsäuren, Arsinigsäure-anhydriden bzwhalogeniden durch Reduktion mit unterphosphoriger Säure bzw. durch elektrochemische Reduktion	
y) aus Halogen-diorgano-arsinen oder Bis-[diorgano-arsin]-oxiden bzwsulfiden mit Metallen oder tert. Phosphinen	148
δ) durch thermische Spaltung von Azido-diorgano-arsinen	149
ε) aus Alkalimetall-diorganoarseniden	149
ζ) aus Arsenoverbindungen (Cyclopolyarsinen) η) aus Arsen oder Arsen(III)-oxid (Cadet-Reaktion)	150 151

2. Tri- und Tetraarsine	151
α) aus Halogen-diorgano-arsinen und Organostannyl-arsinen	
B. Umwandlung	152
e) Arseno-Verbindungen (Polymere Arsine und Cyclopolyarsine)	154
A. Herstellung	
1. durch Reduktion von Arsonigsäure-anhydriden (Oxo-organoarsine), Arsonig- od Arsonsäuren	156
α) mit phosphoriger oder unterphosphoriger Säure β) mit Natriumdithionit γ) mit Zinn(II)-chlorid oder Zink/Salzsäure	158
durch Reduktion von Arsonigsäure-halogeniden mit Natrium oder Quecksilber aus prim. Arsinen aus anderen Arseno-Verbindungen	160
B. Umwandlung	
1. Oxidation 2. Reduktion 3. Komplexbildung	162
f) Arsonigsäuren (Dihydroxy-organo-arsine) und ihre Derivate	164
1. Arsonigsäuren und Arsonigsäure-anhydride (Dihydroxy-organo-arsine, Oxo-organo-arsibzw. prim. Arsin-oxide)	
A. Herstellung	164
α) durch Reduktion von Arsonsäuren	164
a_1) mit Schwefeldioxid	164
α₂) mit Phosphorhalogenidenα₃) mit Phenylhydrazin	165
β) aus Derivaten der Arsonigsäuren	167
β_1) durch Hydrolyse	
y) aus Arsen(III)-chlorid oder -oxid	
δ) durch Oxidation von prim. Arsinen oder Cyclopolyarsinen	
B. Umwandlung	169
2. Arsonigsäure-dihalogenide und -dipseudohalogenide (Dihalogen- und Dipseudohaloge	
organo-arsine)	
A. Herstellung	171
a) aus Arsen(III)-halogeniden oder Arsen(III)-amidhalogeniden	
a_1) durch Umsetzung mit Organo-metall-Verbindungen	171
α ₂) durch Umsetzung mit tert. Arsinen	
a_3) durch Addition an Alkenen oder Alkinen	
β) aus Arsen oder Arsen(III)-oxid	
γ) aus tert. Arsinen oder Arsinigsäure-halogeniden (Halogen-diorgano-arsinen)	177
δ) durch Reduktion von Arsonsäuren	
$\delta_{\scriptscriptstyle 1}$) mit Schwefeldioxid/Halogenwasserstoffsäure	179
$\delta_{\mathtt{2}})$ mit Phosphor-halogeniden oder Zinn(II)-chlorid	186
ε) aus Arsonigsäure-dihalogeniden durch Halogen-Austausch	184
ζ) aus Arsonigsäuren oder ihren Derivaten	
η) aus prim. Arsinen oder Arseno-Verbindungen	187

B. Umwandlung	188
 a) Hydrolyse β) Oxidation und Reduktion γ) Reaktionen mit Organometall-Verbindungen, Friedel-Crafts- und Additionsreaktionen 	188 189
3. Arsonigsäure-ester-anhydride, -ester-halogenide und -ester-amide (Oxa-bis-arsonig-säure-alkylester, Halogen- und Amino-alkoxy-organo-arsine)	190
A. Herstellung	190
a) aus Arsonigsäure-dihalogeniden (Dihalogen-organo-arsinen)	
(Dialkoxy-organo-arsinen)	194
B. Umwandlung	
4. Arsonigsäure-diester (Diorganoxy-organo-arsine)	195
A. Herstellung	195
α) aus Arsonigsäure-dihalogeniden (Dihalogen-organo-arsinen)	195
α_1) durch Umsetzung mit Alkoholen, Alkanolaten oder Diolen	195
a_2) durch Umsetzung mit Oximen, Silanolen oder Phosphiten	
β) aus Arsonigsäure-estern, -amiden oder -ester-halogeniden	199
γ) aus Arsonigsäure-anhydriden (Oxo-organo-arsinen)	201
γ_1) durch Unsetzung mit cyclischen Kohlensäureestern	202
B. Umwandlung	
5. Arsonigsäure-Carbonsäure-Anhydride (Diacyloxy-organo-arsine)	. 204
6. Dithioarsonigsäuren bzw. Thioarsonigsäure-anhydride (Thio-organo-arsine)	. 205
A. Herstellung	206
a) aus Arsonigsäure-anhydriden oder -dihalogeniden	206
β) aus primären Arsinen oder Arseno-Verbindungen	
B. Umwandlung	
7. Thioarsonigsäure-ester-halogenide und -anhydride	. 209 210
A. Herstellung	
a) aus Arsonigsäure-dihalogeniden (Dihalogen-organo-arsinen)	
α_1) durch Umsetzung mit Thiolen oder Thiolaten	
α_2) durch Unisetzing int Dithloten α_3) durch Unisetzing mit Metallsalzen des Thiophenols oder mit Thiosilanen	
β) aus Arsonsäuren bzw. Arsonigsäure-anhydriden oder Thioarsonigsäure-anhydriden	
β_1) durch Umsetzung mit Thiolen oder Dithiolen	
β_2) durch Umsetzung mit Dithiol-, Dithiocarbonaten, Thiiranen oder Thietanen	
γ) durch Reduktion von Arsonsäuren oder Arsonsäureestern mit Mercaptanen	. 215
δ) aus Thioestern oder Thioester-halogeniden der arsenigen Säure	. 216
ε) durch Umsetzung von Arsonigsäure-diamiden (Diamino-organo-arsinen) mit Thiolen oder Dithiolen	216
ζ) durch Umesterung von Arsonigsäure- oder Dithio-arsonigsäure-diestern	
•	
B. Umwandlung	
9. Gemischte Anhydride der Dithioarsonigsäure mit Carbonsäuren oder Phosphorsäuren	. 218

	. 218
a) mit Dithiocarbaminsäuren, Thiocarbonsäuren oder Xanthogenaten	. 218
β) mit Thio- oder Dithiophosphorsäure-O,O-diestern	. 220
10. Arsonigsäure-imide (Imino-arsine)	
11. Arsonigsäure-amid-anhydride	. 221
12. Arsonigsäure-diamide (Diamino-organo-arsine)	. 222
A. Herstellung	. 222
a) aus Arsonigsäure-dihalogeniden	. 222
eta) aus Amid-halogeniden der arsenigen Säure	
γ) durch Umamidierung	. 225
B. Umwandlung	. 225
g) Arsinigsäuren (Hydroxy-diorgano-arsine) und ihre Derivate (R_2 As OH)	. 226
1. Arsinigsäuren und Arsinigsäure-Anhydride	. 226
A. Herstellung	. 226
α) aus Arsen(III)-oxid bzw. Arseniten oder Arsonigsäure-Anhydriden	. 226
α ₁) durch Umsetzung mit Kaliumacetat (Cadet-Reaktion)	
α ₂) durch Umsetzung mit Organo-metall-Verbindungen	. 226
β) durch Reduktion von Arsinsäuren	
γ) durch Hydrolyse von Arsinigsäure-Derivaten	229
δ) durch Oxidation von sek. Arsinen und Diarsinen \ldots	231
B. Umwandlung	232
2. Arsinigsäure-halogenide und -pseudohalogenide (Halogen- und Pseudohalogen-diorgano-	
arsine)	. 232
A. Herstellung	. 232
α) aus Arsen(III)-halogeniden	
	. 232
a) aus Arsen(III)-halogeniden	. 232
lpha) aus Arsen(III)-halogeniden	. 232 . 232 . 235 . 236
lpha) aus Arsen(III)-halogeniden	. 232 . 232 . 235 . 236
lpha) aus Arsen(III)-halogeniden	. 232 . 232 . 235 . 236 . 237
lpha) aus Arsen(III)-halogeniden	. 232 . 232 . 235 . 236 . 237
$lpha$) aus Arsen(III)-halogeniden $lpha_1$) durch Umsetzung mit Organometall-Verbindungen $lpha_2$) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) $lpha_3$) durch Umsetzung mit Alkenen und Alkinen $lpha_4$) durch Umsetzung mit Arendiazoniumsalz eta) aus tert. Arsinen	. 232 . 235 . 236 . 237 . 237
lpha) aus Arsen(III)-halogeniden	. 232 . 235 . 236 . 237 . 237
$lpha$) aus Arsen(III)-halogeniden $lpha_1$) durch Umsetzung mit Organometall-Verbindungen $lpha_2$) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) $lpha_3$) durch Umsetzung mit Alkenen und Alkinen $lpha_4$) durch Umsetzung mit Arendiazoniumsalz eta) aus tert. Arsinen eta_1) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden eta_2) durch Spaltung mit Halogenwasserstoffsäuren	. 232 . 232 . 235 . 236 . 237 . 237 . 239
 α) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure- 	. 232 . 232 . 235 . 236 . 237 . 237 . 239
 α) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) 	. 232 . 232 . 235 . 236 . 237 . 237 . 239
 a) aus Arsen(III)-halogeniden a₁) durch Umsetzung mit Organometall-Verbindungen a₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) a₃) durch Umsetzung mit Alkenen und Alkinen a₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden 	. 232 . 232 . 235 . 236 . 237 . 237 . 239 . 242 . 242
 a) aus Arsen(III)-halogeniden a₁) durch Umsetzung mit Organometall-Verbindungen a₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) a₃) durch Umsetzung mit Alkenen und Alkinen a₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen 	. 232 . 232 . 235 . 236 . 237 . 237 . 239 . 242 . 242
 α) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen 	. 232 . 232 . 235 . 236 . 237 . 237 . 239 . 242 . 242 . 243 . 244
 α) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) 	2322 2322 2355 2366 2377 2379 2399 242 242 243 2444 245
 a) aus Arsen(III)-halogeniden a₁) durch Umsetzung mit Organometall-Verbindungen a₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) a₃) durch Umsetzung mit Alkenen und Alkinen a₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden δ) aus Arsinsäuren 	232 232 235 236 237 237 239 242 242 243 244 245 246
 a) aus Arsen(III)-halogeniden a₁) durch Umsetzung mit Organometall-Verbindungen a₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) a₃) durch Umsetzung mit Alkenen und Alkinen a₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden 	232 232 235 236 237 237 237 239 242 242 243 244 245 246 246
 a) aus Arsen(III)-halogeniden a₁) durch Umsetzung mit Organometall-Verbindungen a₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) a₃) durch Umsetzung mit Alkenen und Alkinen a₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden δ) aus Arsinsäuren δ₁) mit Schwefel-dioxid 	232 232 235 236 237 237 237 239 242 242 243 244 245 246 246 249
 a) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden δ) aus Arsinsäuren δ₁) mit Schwefel-dioxid δ₂) mit unterphosphoriger Säure 	232 232 235 236 237 237 237 239 242 242 243 244 245 246 249 250
 a) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden δ) aus Arsinsäuren δ₁) mit Schwefel-dioxid δ₂) mit unterphosphoriger Säure δ₃) mit Phosphor(III)-halogeniden ε) aus Arsinigsäure-Derivaten ζ) aus sek. Arsinen oder Diarsinen 	232 232 235 236 237 237 237 239 242 242 243 244 245 246 249 250 250 253
 a) aus Arsen(III)-halogeniden α₁) durch Umsetzung mit Organometall-Verbindungen α₂) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) α₃) durch Umsetzung mit Alkenen und Alkinen α₄) durch Umsetzung mit Arendiazoniumsalz β) aus tert. Arsinen β₁) durch Umsetzung mit Arsen(III)-halogeniden oder Arsonigsäure-dihalogeniden β₂) durch Spaltung mit Halogenwasserstoffsäuren β₃) durch Umsetzung mit Halogenen bzw. Interhalogenen oder Thiophosphorsäure-trichlorid (über tert. Arsin-halogenide) γ) aus Arsonigsäure-dihalogeniden γ₁) durch Umsetzung mit Organometall-Verbindungen γ₂) durch Addition an Acetylen γ₃) durch Umsetzung mit Aromaten (Friedel-Crafts-Reaktion) γ₄) durch Umsetzung mit Arsonigsäure-anhydriden δ) aus Arsinsäuren δ₁) mit Schwefel-dioxid δ₂) mit unterphosphoriger Säure δ₃) mit Phosphor(III)-halogeniden ε) aus Arsinigsäure-Derivaten 	2322 2322 2355 2366 2377 2377 2399 2422 2424 2450 2466 2466 2490 2500 2530 2531 2541

η_2) Arsinigsäure-cyanide und -thiocyanate	
η_3) Arsinigsäure-azide	
δ) aus tert. Arsin-oxiden bzwsulfiden	258
B. Umwandlung	
α) Reaktionen mit Basen	259
β) Oxidation	259
γ) Reduktion	260
δ) Pyrolyse	
3. Arsinigsäure-ester (Organooxy-diorgano-arsine)	
A. Herstellung	
a) aus Arsinigsäure-halogeniden oder -anhydriden \ldots	
a_1) durch Umsetzung mit Alkoholen oder Alkanolaten	
α_2) durch Umsetzung mit Oximen oder Silanolen	
eta) aus Arsinigsäure-amiden	265
γ) aus Arsonigsäure-ester-chloriden	267
δ) aus tert. Arsinoxiden	268
ε) durch Umesterung	
B. Umwandlung	268
4. Gemischte Anhydride mit Carbonsäuren (Acyloxy-diorgano-arsinen)	269
5. Thio-arsinigsäuren (Mercapto-diorgano-arsine), Thio-arsinigsäure-anhydride	
[Bis-(diorgano-arsin)-sulfide], Seleno- und Telluro-arsinigsäure-anhydride	
[Bis-(diorgano-arsin)-selenide bzw. telluride]	270
A. Herstellung	
α) Thioarsinigsäuren aus Dialkyl-phenyl-arsin-sulfiden	270
β) Thioarsinigsäure-anhydride aus Arsinigsäure-halogeniden oder -anhydriden	270
γ) Thioarsinigsäure-anhydride aus sek. Arsinen oder Diarsinen	
B. Umwandlung	272
6. Thioarsinigsäure-ester (Organothio-diorgano-arsine) und verwandte Verbindungen	
A. Herstellung	
a) aus Arsinigsäure-halogeniden	. 272
β) aus Arsinigsäure-estern oder -amiden	. 275
γ) aus Arsinigsäuren, Thioarsinigsäuren oder Arsinsäuren	. 270 276
δ) aus sek. Arsinen oder Diarsinen	. 270 277
B. Umwandlung	. 218
7. Gemischte Anhydride der Thioarsinigsäuren mit Carbonsäuren, Phosphorsäuren oder	
Sulfonsäuren	
α) Anhydride mit Carbonsäuren (Acylthio-diorgano-arsinen)	. 279
β) Anhydride mit Xanthogenaten, Thio- und Dithio-carbamaten (Alkoxy-thiocarbonyl-	
thiodiorgano-arsine, Dialkylaminocarbonylthio- und -thiocarbonylthio-diorgano	280
arsine)	. 200
thiophosphorylthio)-diorgano-arsine und Alkan- bzw. Arsensulfonylthio-diorgano-	
arsine]	. 281
8. Arsinigsäure-amide (Amino-diorgano-arsine)	
A. Herstellung	. 282
α) aus Arsonigsäure-halogeniden	
	-

a_1) durch Ammonolyse oder Aminolyse	
eta) aus Dichlor-dialkylamino-arsinen γ) aus Arsinigsäure-amiden	
γ ₁) durch Umamidierung	
γ_2) durch Umwandlung am Amid-Stickstoff	
B. Umwandlung	
9. Bis- und Tris-[diorgano-arsino]-amine	287
10. Arsinigsäure-hydrazide (N-Dimethylarsino-hydrazine)	
I. Organische Derivate des fünfwertigen Arsens	289
a) Orthoarsonsäuren und deren Derivate	289
α) Orthoarsonsäuren-tetrahalogenide (Tetrahalogen-organo-arsorane) β) Orthoarsonsäure-tetraester	289
b) Arsonsäuren und ihre Derivate	293
1. Arsonsäuren	
A. Herstellung	293
a) aus Alkalimetallsalzen der arsenigen Säure	
a_1) durch Umsetzung mit Halogenalkanen (Meyer-Reaktion)	
a_2) durch Umsetzung mit Halogenaromaten (Rosenmund-Reaktion)	295
β) aus Arsen(III)-chlorid und Arendiazoniumsalzen (Scheller-Reaktion)	
γ) aus Arsensäure (Béchamp-Reaktion)	304
δ_1) aus prim. Arsinen oder Arseno-Verbindungen	
δ_2) aus Arsonigsäure-anhydriden oder -halogeniden	306
ε) durch Umwandlung in den organischen Rest	
B. Umwandlung	313
α) Salzbildung	313
β) Umwandiung der Arsono-Gruppe	
eta_1) Thermolyse (Anhydrid -Bildung)	
β_3) Cyclisierungsreaktionen	
$\widehat{\beta}_{4}$) Veresterung	
eta_{5}) Spaltung der Arsono-Gruppe	316
Arsonsäure-dihalogenide und -dipseudohalogenide	
A. Herstellung	318
α) aus Arsonigsäure-diester	
β) aus Salzen der Arsonsäuren	
γ) aus Arsonsäuren	
γ ₁) durch Veresterung mit Alkoholen	320
γ_2) durch Umsetzung mit Organo-elementhalogeniden oder verwandten Verbindungen	
δ) durch Umesterung	322
B. Umwandlung	322
4. Arsonsäure-ester-amide und -diamide	323

5. Thioarsonsäure und ihre Derivate	
c) Derivate der Orthoarsinsäurend) Arsinsäuren und ihre Derivate	. 325 . 327
1. Arsinsäuren	
A. Herstellung	. 327
α) aus Arsonigsäure-dihalogeniden oder -anhydriden	. 327
α_1) durch Alkylierung (Meyer-Reaktion)	
β) aus Arsen(III)-oxid, -chlorid oder Arsen(V)-fluorid	. 333 . 333 . 334
δ_1) aus sekundären Arsinen oder Diarsinen	. 335 . 338
arepsilon) aus Arsonsäuren	
B. Umwandlung	. 343
2. Arsinsäure-ester und Organoelement-arsinate	. 344
α) Arsinsäure-alkylester (Alkoxy-diorgano-arsinoxide)	344
(β_1) Organoaluminium-, -indium- und -gallium-diorganoarsinate	. 345
3. Dithioarsinsäuren	
e) tertiäre Arsinoxide und ihre Derivate	351
1. tert. Arsin-dihalogenide und -dipseudo-halogenide (Dihalogen- und Dipseudohalogen- triorgano-arsorane	. 351
A. Herstellung	351
lpha) aus tert. Arsinen	354
γ) aus tert. Arsin-dihalogeniden durch Austauschreaktionen	356
B. Umwandlung	. 358
2. tert. Arsin-hydroxy-halogenide bzwpseudohalogenide (Hydroxy-triorganoarsoniumsalze) und andere Arsoniumsalze mit drei As-C-Bindungen (Quasiarsoniumsalze)	. 359
 a) Hydroxy-triorgano-arsoniumsalze (tert. Arsin-hydroxy-halogenide bzwpseudo-halogenide) 	250
β) Alkoxy- und Alkylthio-arsoniumsalze γ) Quasiarsoniumsalze mit einer Arsen-Stickstoff-Bindung	362
3. tert. Arsinoxide	
A. Herstellung	369
α) aus tert. Arsinen durch direkte Oxidation	369
a_1) von tert. Arsinen	369
eta) aus Arsinigsäure-halogeniden oder -anhydriden	378
γ) aus Arsinsäuren (Ringschlußreaktion)	
δ) aus tert. Arsinsulfiden, quart. Arsoniumsalzen oder Arsen-yliden	

Inhalt		11
Inhalt		1

	B. Umwandlung	382
4	l. tertiäre Arsinsulfide und -selenide	383
	A. Herstellung	383
	lpha) aus tert. Arsinen eta) aus tertiären Arsinoxiden oder ihren Derivaten eta	
	B. Umwandlung	388
5	5. tertiäre Arsin-imine	388
	A. Herstellung	
	lpha) aus tert. Arsinen	
	B. Umwandlung	393
f) q	uartäre Arsoniumsalze, Arsen-ylide und Pentaorgano-arsorane	395
1	. quartäre Arsoniumsalze	395
	A. Herstellung	395
	α) durch Alkylierungsreaktionen	395
	a_1) von Arsen und Arsino-element-Verbindungen	
	α_2) von primären bzw. sekundären Arsinen, Diarsinen bzw. Cyclopolyarsinen	
	α ₃) von tert. Arsinen	
	a_4) von Arsonig- und Arsinigsäure-Derivaten	
	a_6) von Arsen-Yliden und Pentaorgano-arsorane	
	β) durch Arylierung tert. Arsine	
	γ) aus tert. Arsinoxiden und ihren Derivaten durch Umsetzung mit metallorganischen Verbindungen	
	δ) aus Dihalogen-triorgano-arsorane durch Cyclisierung	
	ε) aus anderen Arsoniumsalzen unter Erhalt der As-C-Bindungen	
	ε_1) Reaktionen am C-Gerüst	
	ε_2) Austausch des Anions	
	B. Umwandlung	419
	-	
	 α) Bildung von Doppelsalzen und Additionsverbindungen β) Reaktionen mit Basen 	
	β_1) Hydrolyse, Alkoholyse und Cyanolyse	
	β_2) Reaktionen von Alkali-amiden, -hydriden, -alanaten, -boranaten oder -gallaten	
	γ) Reaktionen mit metallorganischen Verbindungen	
2	. Alkyliden-arsorane (Arsen-ylide)	424
	A. Herstellung	424
	α) aus Arsoniumsalzen (Salz-Methode)	
	β) aus tert. Arsinen	
	γ) aus tert. Arsin-oxiden oder -dihalogeniden	427
	δ) aus anderen Alkyliden-arsoranen $$	430
	B. Umwandlung	433
3	3. Pentaorgano-arsorane	437
	A. Herstellung	437
	B. Umwandlung	441

Methoden zur Herstellung und Umwandlung von Organo-antimon-Verbindungen	
I. Organische Verbindungen des dreiwertigen Antimons	443
a) Stibine, Antimonine (Stibabenzole, Stibide und verwandte Verbindungen)	
1. Stibine	
A. Herstellung	443
a) primäre und sekundäre Stibine durch Reduktion von Halogen-stibinen	443
β) tert. Stibine	
β_1) aus Antimon(III)-oxid bzwhalogeniden oder Halogen-stibinen	
$\beta\beta_1$) durch Umsetzung mit Organometall-Verbindungen	
 i₁) mit Grignard- oder Organo-lithium Verbindungen	
i ₃) durch Umsetzung mit Organo-Verbindungen verschiedener Elemente	456
$etaeta_2$) durch Arylierung mit Diazonium- oder Halogeniumsalzen \ldots	457
eta_2) aus Antimon oder seinen Legierungen $$	457
eta_3) durch Alkylierung von sek. Stibiden	458
β_4) an Alkine	
$\beta\beta_2$) an Keten	462
eta_5) aus quart. Stiboniumsalzen, Pentaorgano-stiboranen, tert. Stibinoxiden oder ihren Derivaten	
$\beta\beta_1$) durch Spaltung von quart. Stiboniumsalzen bzw. Pentaorgano-stiboranen $\beta\beta_2$) durch Reduktion von tert. Stibinoxiden oder ihren Derivaten β_6) durch Austauschreaktionen oder Umwandlung in den organischen Resten (optisch aktive tert. Stibine)	464
B. Umwandlung	
α) Oxidation, Salz- und Komplex-Bildung β) Reaktionen unter Spaltung der Sb-C-Bindung	. 467
2. Antimonine (Stibabenzole) 3. Stibide und verwandte Verbindungen	. 471
α) Alkalimetall- und Erdalkalimetallstibide β) Stibino-borane, -silane, -stannane, -germane und -plumbane	. 471
b) Distibine, Antimono- und verwandte Verbindungen (Cyclopolystibine)	
1. Distibine	
A. Herstellung	
a) durch Reduktion von Stibinigsäure-halogeniden	
β) aus sek. Stibinen oder Stibiden	. 47
B. Umwandlung	. 478
2. Antimono-Verbindungen (Cyclopolystibine) und Verbindungen mit Sb-As- und Sb-P-Bindung.	. 479
c) Stibonigsäuren und ihre Derivate	
1. Stibonigsäure-anhydride (Oxo-organo-stibine)	
A. Herstellung B. Umwandlung	. 48
2. Stibonigsäure-dihalogenide	
A. Herstellung	

1	3	3
	1	13

 a) durch Reduktion von aromatischen Stibonsäuren β) aus Antimon(III)-chlorid oder metallischem Antimon 	
β_1) durch Arylierung mit Diazonium- oder Halogeniumsalzen	
eta_2) durch Alkylierung	
y) aus tert. Stibinen oder Stibonigsäure-halogeniden	
δ) durch Pyrolyse von Trihalogen-dialkyl-stiboranen ϵ) durch Halogen-Austausch ϵ	
B. Umwandlung	
3. Stibonigsäure-diester	
A. Herstellung	489
 α) aus Stibonigsäure-dihalogeniden oder -diamiden β) durch Umesterung 	489
B. Umwandlung	
4. Anhydride und Anhydrid-halogenide der Dithiostibonigsäure	
5. Dithiostibonigsäure-diester	
6. Stibonigsäure-amide	494
d) Stibinigsäuren und ihre Derivate	495
1. Anhydride der Stibinigsäuren (Bis-[diorgano-stibin]-oxide)	
2. Stibinigsäure-halogenide und -pseudohalogenide	495
A. Herstellung	
α) durch Reduktion von Stibinsäuren bzw. Orthostibinsäure-trihalogeniden	
eta) aus tert. Stibin-dihalogeniden γ) aus Antimon(III)-halogeniden γ	
γ ₁) durch Umsetzung mit Organometall-Verbindungen	498
γ ₂) durch Disproportionierungsreaktionen mit tert. Stibinen bzw. Stibonigsäure- dihalogeniden	499
δ) aus Stibinigsäure-Derivaten	
ε) aus Distibinen	
ζ) aus Stibinigsäure-halogeniden durch Halogen-Austausch	
B. Umwandlung	502
3. Stibinigsäure-ester	503
A. Herstellung	
B. Umwandlung	506
4. Gemischte Anhydride der Stibinigsäure mit Carbon- bzw. Carbaminsäuren (Acyloxy-bzw. Aminocarbonyloxy-diorgano-stibin)	504
5. Stibinigsäure-thioanhydride und gemischte Anhydride der Thiostibinigsäuren mit Dithio-	300
carbaminsäuren	507
6. Thiostibinigsäure-ester	
7. Stibinigsäure-amide und verwandte Verbindungen	509
A. Herstellung	
α) aus Stibinigsäure-halogeniden	
B. Umwandlung	
II. Organische Verbindungen des fünfwertigen Antimons	
a) Stibonsäuren und ihre Derivate	
Orthostibonsäure-tetrahalogenide und ihre Derivate	
** Ordinalite-letraranoende ind intelivate	

A. Herstellung B. Umwandlung	512 515
2. Stibonsäuren	516
A. Herstellung	516
α) durch Diazoreaktionen	516
β) durch Umwandlung im organischen Rest	521
γ) durch verschiedene Reaktionen	523
B. Umwandlung	
b) Stibinsäuren und ihre Derivate	
1. Derivate der Orthostibinsäuren	
α) Orthostibinsäure-trihalogenide (Trihalogen-diorgano-stiborane)	
A. Herstellung	
a_1) durch Halogenierung von sek. Organo-antimon(III)-Verbindungen	524
α_2) aus Stibinsäuren (über Diazoreaktionen) oder aus Antimon(V)-chlorid	526
a_3) aus Orthostibinsäure-trichloriden durch Halogen-Austausch	
B. Umwandlung	528
β) Orthostibinsäure-anhydrid-dichloride, -ester-dichloride und -triester	529
A. Herstellung	529
B. Umwandlung	
2. Stibinsäuren	
A. Herstellung	532
 α) durch Arylierung von Antimon(III)-Verbindungen mit Aren-diazoniumsalzen (Diazo- synthese) bzw. Diarylhalogeniumsalzen (Über Orthostibinsäuretrichloride) 	532
 α₁) Zersetzung von Doppelsalzen der Arendiazonium- bzw. Diarylhalogenium-chloride mit Antimon(III)- oder (V)-chlorid	532
α ₂) Umsetzung von Arenstibonigsäuredihalogeniden	
mit Arendiazonium-Doppelsalzen	
eta) durch oxidative Hydrolyse (über Orthostibinsäure-Derivate)	
γ) Cyclisierungsreaktionen	536
B. Umwandlung	536
c) tert. Stibinoxide und ihre Derivate	536
1. tert. Stibin-dihalogenide (Dihalogen-triorgano-stiborane) und verwandte Verbindungen	536
A. Herstellung	537
α) aus tert. Stibinen	537
 β) aus tert. Stibin-oxiden, -dihydroxiden, -hydroxid-halogeniden, -diacetaten, quart. Stiboniumsalzen oder Pentaorgano-stiboranen 	541
γ) durch Alkylierung oder Arylierung von metallischem Antimon, Antimon(V)-	-
halogeniden oder Organo-antimon-Verbindungen	543
γ ₁) Reaktionen mit Alkylhalogeniden, Olefinen, Aromaten oder Organo-quecksilber-	
Verbindungen	
γ ₂) Diazoreaktionen	
δ) aus tert. Stibin-dihalogeniden durch Halogen-Austausch	
B. Umwandlung	547
Bis[halogen-(bzwpseudohalogen)-triorgano-antimon]-oxide, Halogen-alkoxy- und silyloxy-stiborane	548
3. Halogen-acylthio-triorgano-stiborane und Bis-[halogen-triorgano-antimon]-amine	
4. Diacyloxy-, Dialkoxy- und Bis-[organoperoxy]-triorgano-stiborane	553

A. Herstellung	. 553
α) aus Dihalogen-, Dialkoxy-triorgano-stiboranen oder tert. Stibinen	
5. tert. Stibinoxide bzwdihydroxide	. 559
A. Herstellung	. 559
a) durch Oxidation von tert. Stibinen	
β) durch Hydrolyse von tert. Stibinoxid-Derivate	
γ) durch Spaltungs- bzw. Cyclisierungsreaktionen	. 564
B. Umwandlung	. 564
6. tert. Stibinsulfide, -selenide und deren Derivate	. 565
a) Bis-[alkylthio]- und Bis-[acylthio]-triorgano-stiborane β) tert. Stibinsulfide und -selenide	
A. Herstellung	. 566
eta_{1}) aus tert. Stibinen	
β_2) aus tert. Stibinoxiden bzw. Dihydroxy- bzw. Dihalogen-triorgano-stiborane	. 567
B. Umwandlung	. 568
7. tert. Stibin-imine (Imino-triorgano-stiborane)	. 569
d) quartäre Stiboniumsalze bzw. Tetraorgano-stiborane, Stiborane (Stiboniumylide) und Pentaorgano-stiborane	. 570
1. quart. Stiboniumsalze bzw. Tetraorgano-stiborane	. 570
A. Herstellung	. 571
α) durch Alkylierung bzw. Arylierung von metallischem Antimon oder tert. Stibinen	
eta) aus Dihalogen-triorgano- oder Pentaorgano-stiboranen	. 574
β_1) aus Dihalogen-triorgano-stiboranen	
β ₂) aus Pentaorgano-stiboranen	
$etaeta_1$) Spaltung mit Halogenen	
$\beta\beta_3$) Hydrolyse bzw. Alkoholyse	
γ) aus Stiboniumsalzen bzw. Tetraorgano-stiboranen durch Anionen-Austausch	. 580
B. Umwandlung	. 582
2. Alkyliden-stiborane (Stibonium-ylide; tert. Stibin-alkylene)	. 583
3. Pentaorgano-stiborane	
A. Herstellung	. 584
α) aus Antimon(V)-chlorid, tertStibin-dihalogeniden oder quart. Stiboniumsalzen	
eta) aus Pentaorgano-stiboranen	. 588
Methoden zur Herstellung und Umwandlung von Organo-wismuth-Verbindungen	. 590
I. Verbindungen des dreiwertigen Wismuths	. 590
a) Bismuthine und verwandte Verbindungen	
1. Bismuthine	. 590
A. Herstellung	
lpha) aus Wismuth(III)-halogeniden oder Halogen-bismuthinen	
α_1) durch Reduktion mit Lithium-alanat bzwboranat	. 590 . 591
chlorid-Doppelsalzen	. 598

β) durch verschiedene Umsetzungen von Wismuth(III)-salzen oder	
Amino-organo-bismuthinen	600
γ) aus metallischem Wismuth	600
δ) durch Reduktion von Dihalogen-triorgano-bismuthoranen	601
E) durch Umwandlung von tert. Bismuthinen	001
B. Umwandlung	
α) Oxidation	602
β) Reaktionen mit Halogen bzw. Pseudohalogenen	603
γ) Hydrolyse (basisch), Alkoholyse, Thiolyse und Ammonolyse	604
8) Spaltung durch Metalle, metallorganische Verbindung oder Wasserstoff	605
ζ) Donor-bzw. Akzeptor-Eigenschaften der tert. Bismuthine	606
2. Polybismuthine, Dibismuthine und Bismabenzol	
Polyoismuttine, Dioismuttine and Bismaoenzoi Halogen- und Pseudohalogen-organo-bismuthine	607
A. Herstellung	
α) aus tert. Bismuthinen	
α ₁) durch Umsetzung mit Wismuth(III)-chlorid bzwbromid	608
α ₂) durch Umsetzung mit Halogenen, Interhalogenen, Pseudohalogenen (über	
Dihalogen- bzw. Bís-[pseudohalogen]-triorgano-bismuthorane) oder Pseudohalogenwasserstoffsäuren	609
β) aus Wismuth(III)-halogeniden	
γ) aus Halogen-organo-bismuthinen	
B. Umwandlung	
4. Oxo-, Hydroxy-, Alkoxy- und Acyloxy-organo-bismuthine	613
5. Alkylthio-organo-bismuthine	614
6. Amino-organo-bismuthine	010
II. Verbindungen des fünfwertigen Wismuths	616
a) tert. Bismuthoxide und ihre Derivate	616
1. tert. Bismuthinoxide bzwdihydroxide	616
2. Bis-[halogen-(bzwpseudohalogen)-triaryl-bismuth]-oxide und Halogen-alkoxy-triaryl-	
bismuthorane	
3. Dihalogen- und Bis-[pseudohalogen]-triorgano-bismuthorane	. 618
A. Herstellung	. 618
α) aus tert. Bismuthinen	
β) aus Dihalogen-triaryl-bismuthoranen	. 619
$oldsymbol{eta}_1$) durch Halogen-Austausch	
eta_2) durch Umwandlung im organischen Rest	. 620
B. Umwandlung	. 621
4. Bis-[acyloxy]-triorgano-bismuthorane und verwandte Verbindungen	. 621
5. Imino-triaryl-bismuthoranen	. 623
b) quartäre Bismuthoniumsalze, Alkyliden- und Pentaorgano-bismuthorane	
1. quart. Bismuthoniumsalze	
2. Alkyliden-bismuthorane	
3. Pentaorgano-bismuthorane	. 625
Bibliographie	. 627